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1. INTRODUCTION

The purpose of this paper is to propose and investigate a flow con-
trol algorithm for adjusting session rates in a data or voice network.
This algorithm is motivated by a Voice Coder scheme introduced in [1]
and called "embedded coding". In this scheme a segment of talkspurt
is coded into packets of different priority levels., The higher priority
packets contain the ''core' of the speech while the lower priority packets
contain the information that "fine tunes" it, Traditional voice flow
control mechanisms either block the initiation of a call or discard small
segments of it while it is already in progress. By contrast the embedded
coding scheme dynamically trades off between voice quality and congestion
by discarding the lower 'priority" packets either at the point of congestion
or the point of entry. The level of congestion at which the gaps between
the segments, delivered by the traditional schemes, render the speech un-
intelligible is much lower than the one at which the embedded coding
scheme delivers unintelligible information. This flexibility in exercis-

ing flow control makes the embedded coding scheme attractive.

Alleviation and prevention of congestion by discarding lower priority
packets at the point of entry seems to be superior to discarding them at
the point of congestion. The latter amounts to a waste of network resources.
But, it would not be advisable to forgo the capability of discarding lower
priority packets at the point of congestion, because of the time delay

involved in making the entry points aware of downstream congestion. Based

on this we believe that both capabilities should be used. The rates at
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the entry points will be determined upon longer time averages of congestion
levels while the capability of discarding packets at the point of congestion
will serve to alleviate intolerable momentary bottlenecks. The rates at

the entry point will be adjusted so that the capability of discarding
packets at the point of congestion will not be exercised too often.

In this paper we discuss a method of determining the input rates at
the entry point. To this end we will ignore the capability of discarding
packets within the network in order to simplify the analysis. As in
quasistatic routing we employ an "on-line" iterative algorithm that will
solve a static problem. The hope is that the algorithm converges fast
enough relative to the session initiation and termination process, and
as a result will be able to '"track'" its variation keeping the rates in
the ballpark of the optimal rates at all times.

The criterion used to determine input rates is based on the notion
of "fair allocation" introduced in Section 2. Roughly speaking the
objective is to maximize the smallest session rate, and once this is
achieved to maximize the second smallest rate, etc. In Section 3 we
introduce the algorithm and describe its convergence properties.

The idea of the algorithm is to adjust the input rates of sessions
on the basis of the current level of congestion along the session path.
The necessary information is collected by a control packet sent period-
ically by each session origin along the path similarly as in flow contfol
methods investigated by simulation in [1]. This method of adjusting
input rates seems also suitable for other situations where fast reaction

to momentary congestion is needed. For example when the number of users
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in the network is small but some of these users can overload the network
if left uncontrolled to transmit at maximum rate, then a dynamic method
of routing and flow control is needed. The ideas of this paper can
provide an alternative to existing techniques [7], [8] in such situations.

Further work is required along this direction.
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2. PROBLEM FORMULATION

Consider a network with nodes 1, 2, ..., N and a set of directed
links L. Each link ael has a capacity Ca associated with it--a positive
number. Let S denote a set of sessions taking place between nodes. Each

session scS has an origin node associated with it and traverses a subset

of links denoted by Ls. Note that we do not restrict the session to have

a single destination, so the set of links Ls may be for example a tree rooted
at the origin node of s and used for broadcasting messages throughout

the network. We denote by Sa the set of sessions traversing a

link ael. If T is the input rate of session s (in data units/sec), then

the flow Fa of a link acl is given by

The problem broadly stated is to choose a vector of session input rates
r= (..., Te ...} which results in a set of "satisfactory" link flows
{Fa|asL}, and at the same time maintains a certain degree of '"fairness"
for all sessions.

It is customary to consider as one of the characteristics of a fair
allocation of resources in a network the feature that it is indifferent to
the geographical separation of the session's origin and destinations. Al-
though there might be different priorities assigned to sessions, these
priorities are not assigned on the basis of geographical distance. More-
over, two sessions of the same priority should obtain the same rate, if
the rate of one can be traded for the rate of the other without overload-
ing the network or reducing the rate of any other session. This is in
the spirit of making the network 'transparent" to the user.

To capture the notion of fairness and priority as presented above

we define the notion of fair allocation:
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2

For a vector x = (xl,x ,...,xn) in the Euclidean space Rn, we consider

the vector x = (El,iz,...,in) the coordinates of which are the same as

those of x but are rearranged in order of increasing value, i.e. we have

T <X

i'

Mand with each i = i,...,n we can associate a distinct i' such

that X* = x We call x the increasing permutation of x. Given a subset

3

X of R" we will say that a vector xeX is a fair allocation over X if for

" every vector yeX the increasing permutation X of x is lexicographically

X

greater or equal to the increasing permutation y of y, i.e. if y7 > X’
for some j, then there exists an i < j such that y> < x*.

If we view X as a ''feasible'" set, a fair allocation vector x over X

solves a hierarchy of problems. The first problem is to maximize the
minimal coordinate of vectors in X. The second problem is to maximize the
second minimal coordinate over all vectors which solve the first probilenm,
etc.

Hayden [2] proposed an algorithm which results in a rate vector

r= (..., T, ...) which is a fair allocation over the set defined by

F, < pCp ¥ ael, (2)

where p is some constant between 0 and 1. Jaffe [3] proposed an algorithm
which obtains a rate vector r such that the vector (..., Bsrs, ...) is a

fair allocation over the set defined by

i B r, < C -F , v seS, ael, 3
F, £ C, ¥ acl, rg 20, ¥V seS, (4)
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where Bs is some positive constant that characterizes the priority of
session s.

The rationale behind the fair allocation problem based on (2) is quite
simple: we maximize the minimum session rate while not allowing the flow
of any link to be more than some given fraction of its capacity. The
rationale behind (3), (4) is somewhat more sophisticated. Primarily it
enables us to establish preferences among sessions, and to accomodate
fluctuations of a session rate which depend linearly on the rate as we will
demonstrate shortly.

While Jaffe's algorithm is not iterative and as a result is somewhat
unsuitable for distributed operation, Hayden's algorithm may result in
transient flows that are larger than some link capacities (for an example
see [4], p. 39).

Our purpose in this paper is to propose and analyze an iterative
algorithm that solves a problem that is more general than Jaffe's [3],
maintains at all times feasibility of link flows with respect to capacities,
and is suitable for distributed operation. To this end we generalize
the set defined by (3), (4) as follows:

For each link agl and session seS let 8" R* > R" and Bs: R > r"
be functions mapping the nonnegative portion of the real line R" into it-
self. We are interested in finding a rate vector r such that the vector

(...,Bs(rs),...) is a fair allocation over the set defined by

Bg(ry) < g,(C -F,), v seS, aelg (5)

F < C , ¥ acl, r_>0, V¥V seS. (6)
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A vector r with this property will be called a fair allocation rate.

We make the following assumptions regarding the functions ga(-) and

B.(*):

s
Assumption A: For all ael, ga(~) is monotonically nondecreasing, and,
for all sg§, Bs(-) is continuous, monotonically increasing, and maps R"
onto R*. (This implies also that the inverse 3;1(-) exists, is con-

tinuous, monotonically increasing and maps R* onto R*).

Assumption B: The function Hsa(-) defined by

- gl +
Ho () = 8 [g,(9)], V seS, acl, feR

. . + . ps
is convex and differentiable on R and satisfies )

H,(0) = o.

Assumption B is not very restrictive. It is satisfied in particular
if both 3;1(-) and ga(-) are convex, differentiable and monotonically in-
creasing on R+, and ga(O) = 0. Also the convexity assumption in Assumption B can be
replaced by a concavity assumption without affecting the convergence
result of the next section, but this will not be pursued further.
The introduction of the nonlinear function Bs(-) allows us to assign
different priorities to different sessions in a more flexible manner than

in (3), and allows additional freedom in mathematically expressing algo-

rithmic design objectives. As an example let us provide justification

for the use of a particular form for g, in the case where each session

is a voice conversation.




Suppose that the length of time over which each session rate is
averaged is short relative to the '"'time constant" of the counting pr~cess
of the number of off-hook speakers which are currently in talkspurt mode.
Since about 30% of a talkspurt is silence and some segments of the talk-
spurt need more encoding than others, we view the bit rate generated by

the Vocoder for session s¢S as a stochastic process with mean rs--the rate

assigned to user seS. We thus implicitly assume that the Vocoder has the

means of dynamically reconfiguring to the demands of the voice to achieve
the desired average rate. Suppose that we want to reserve excess capacity
on each link so as to be able to accomodate a variation at least as large
as the standard deviation of the flow on the link. Assume that the
standard deviation of the rate of each session se§ is YT where
0< y<1l. For a fixed link acl let s'eS be such that

s' = arg max Tg.

seSa

Then, by the independence of the rates of different sessions, we have,
assuming Fa E.Ca’ that the standard deviation c(Fa) of the flow Fa

satisfies

2
o(F,) Y ‘/ 1 T
sesa
‘YJ (sgs TIr, < YJ C.Tqr
a

Suppose we take in (5)
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2
Bsy (7)) = T » 8CF) = (C,-Fy) (8)

S'

Then from (5), (7) and (8) we obtain

o(F) < YJCa o < ch g,(C,;-F,) = C, - F,.

We are thus guaranteed to be able to accomodate the standard deviation
of the flow resulting from the fair allocation.

In the second interpretation, the length of time over which the
rate is averaged is relatively long with respect to the '"time constant'
of the counting process of the number of off-hook speakers in talkspurt
mode. In this case we deal concurrently with all the off-hook sessions
and want to be able to accommodate the standard deviation around the
mean of the process (i.e., the instantaneous effect of the number of
speakers at the talkspurt mode is washed out by the long time average).
Let q be the fraction of time a speaker is in the talkspurt mode and
assume his rate while in the talkspurt mode is constant. Then using

notations as before

o) = [ (g /@ equ-01"?
seSa
l'q [} 1/2
< (—q C,rg)
< &c)1? (g (c -1V

- q a at"a a
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Again, by choosing g, as in (8) with y = (Igaallz we obtain
q(Fa) < C,-Fy.

The point we want to make by the above arguments is that there is
often a need to allow g, to be a nonlinear function, which may depend also on
Ca’ rather than only on the excess capacity as (3) implies. The exact
role of g, is up to the network designer to decide, and our formulation
allows him a great deal of flexibility in this regard.

It is possible to show that Assumptions A and B guarantee existence

and uniqueness of a fair allocation rate. The proof given below is con-

structive and is based on a finitely terminating algorithm. However this
algorithm, in contrast with the one of the next section, is not suitable
for distributed, on-line operation since it must be restarted each time
an old session is terminated or a new one is initiated.
Consider first the problem of finding a vector r = (..., rs,...) that
maximizes
min ss(rs)

seS

over the feasible set

R0 = {r[ (5) and (6) are satisfied}

This is the first problem in the hierarchy of problems solved by a fair
allocation rate, and can be solved simply by observing that its optimal

value [i.e. max min B8 _(r )] is equal to
s'"s
rsRo seS

-1
w¥ = max{w|w < g [C - B. (w)], aelL} . 9)
1 l — ®a*"a SES s

a
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This follows easily from the fact that both g, and 3;1 are monotonically

nondecreasing. Denote

-1
L*(1) = {ael|wr = g [C_ - T B (WH]}
1 a a SeSa s 1
S*(1) = {seS | L ALY # B).

For any fair allocation rate (..., T, ...) the rate of the sessions in

8*(1) is equal to s;l(wi), i.e.

r, o= g, ¥ ses*(1),
while L*(1) may be viewed as the set of bottleneck links the presence
of which does not allow us to increase min ss(rs) beyond the level w;.
Therefore for the purposes of determinizgsfurther a fair allocation

rate vector, the rates of the sessions seS*(l) are fixed at B;l(wi) and
we can consider a reduced network whereby the links aelL*(1) and sessions

seS*(1) are eliminated while the capacity Ca of each link a#L*(1) is

replaced by

c -} IRCIR

® sest(nns, °

If 8*(1) = S we are done; otherwise we can consider the problem of
maximizing the minimal value of Bs(rs) in the reduced network similarly

as earlier. This will determine a new optimal value wE with w; > w;, a
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a new set of bottleneck links L*(2), and a set of sessions §*(2) such that

T

E B(r) = w3, Y seS*(2)

in any fair allocation vector. If $*(1)(US*(2) = S we are done; otherwise
we can proceed by constructing a reduced network and continue in the same
fi manner as earlier until we exhaust all sessions. This argument constructs
o a fair allocation rate r* and shows that it is uniquely defined in terms of
] the scalars wi, w%,..., and the corresponding sets S$*(1), $*(2),... Note
f§ also that the session rates r;, seS and associated link flows F;,aeL

3 satisfies

3 r; = min Hsa(Ca-F;), Y ses. (10)
. aELs

b7 The algorithm of the next section is based on this property.

r* satisfies (10) then it is a fair allocation rate. To see this let

-~ -~

- i We can also show the reverse property namely that if a rate vector

T = (...,rs,...) satisfy (10) or equivalently

B(r) = min g_(C_-F), YV se8, (11
s''s aeLs a‘“a a

Observe that from the definition (9) of wI and (11) we obtain

¢

(]
i
i w¥ > w
]
1
[}

where

w. = min min g _(C_-F).
1 seS aeLs a~a a
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; Let ag| be any link such that

W: gE(CE-FE) = W

Then from (11) we have

i . = gtw), ¥ seSs

= s s 177 a

+ . ey . i E - ~ . = Fa
3 The inequality W, o<Wy implies that Fa Z r,o< z r} F5
;- seS3 seSy

f: where r* is the fair allocation rate. But this implies that
w = -~ ,__.:_. A C-F* *

e "1 ga(ca I'a) 2 ga(Ca Fi) 2 v

ﬁz Therefore we must have Wl = wi and it follows that the vector T solves
x

the first problem in the hierarchy of the fair allocation problem.

Proceeding similarly as earlier we can show that ¥ solves all the problems

Ny AR Y

o e e — . ———— e

in the hierarchy of the fair allocation problem and is therefore a fair
allocation rate.
We summarize the conclusions from the preceding arguments in the

following proposition.

Proposition 1: Let Assumptions A and B hold.

a) There exists a unique fair allocation rate.

b) r* = (...,r;,...) is a fair allocation rate if and only if it

satisfies

B_(r*) = min g (C_-F*), V seS (12) |
-3 s ae‘-s a“ a a

chrm e - e

or equivalently

I e e o ZNE W . . . . © o - -
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r* = min H_ (C_-F*),
S aeLs sa‘ a a

In some situations it may be reasonable to consider, in addition to

(5) and (6), the constraint

where Rs is given upper bound to the
Rs either as a limit on rate imposed
as a maximum desired rate by session
allocation rate over the set defined
to the problem considered earlier by
artificial link a traversed only by

Ca of that link equal to
s
C, = R +B.(RY,

a
S

and by selecting the function g, to
[

Bs(ry) < g, (€, -r,) = C, - T

S S

becomes LI Bs(rs) < Cas = Rs + BS(RS) and is equivalent to (14).

Ty AN SN TS

Y seS. (13)

(14)

rate of session rate s. We may view
by technological restrictions or

s. The problem of finding a fair

by (5), (6), and (14) can be reduced
introducing for each se$S, an

session s by setting the capacity

be the identity. Then the constraint

S
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3. THE ALGORITHM

k (eees rt, ...) be the rate vector obtained after k iterations

Let r

and let {Fi} be the corresponding set of total link flows. Assume that

k

. 5
0 < F, < C,, vV ael (15)
k+1 k+1 . . .
The new rate vector r = (..., T, »++.) Obtained at the (k+l)st iteration
is given by
k+l . k k k k
g = min {r_+y, [Hsa(ca-pa) - rs]}. ¥ seS (16)
8eLs
where k is given b
Ya g y
Y: = . k (17)
' -
1+ 2 Hsa(ca Fa )
seSa

and H;a(-) denotes the first derivative of Hsa(o). In a practical
implementation of the algorithm the link flows F: can either be measured
(by taking a time average), or they can be mathematically computed as
the sum of the session rates rz, seSa. The session rates computed via
(16), (17) will have to be translated into physical rates by software
residing at the session origin nodes,

The following lemma shows among other things that property (15) is

maintained by the algorithm at each iteration and therefore if the initial

link flows F: are within the link capacities Ca the same is true for all

link flows generated by the algorithm.

Lemma 1: Let Assumptions A and B hold and assume that the initial rate

vector r° is such that
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o 4]
0 < rg, Vses, 0 < Fg <C,, ¥ ael. (18)

Then if {rk} is a rate sequence generated by the algorithm (16) with yz

given by (17) we have for all k

k k
0 < Ty Y seS, 0 < Fa < Ca, vV ael. (19)
4 Furthermore
3 X< ¥ H_(C-FS, Vv oael, k21 (20)
1! a - sa‘a a’’ ’ =
: Sesa

proof: See Appendix A.

The idea behind the choice of expression (17) as well as the intuition
behind Lemma 1 can be best explained by the use of Figure 1. Let the function

g | G (+): R* > R" be given by

Ga(Fa) = Z Hsa(ca-Fa) (21)
seS
a
The figure depicts the relations between F: and F§+1, as if the network
k+1

B consisted of the single link a. F, is determined by intersection the
tangent to the graph of Ga(Fa) at the point (F:, Ga(F:)), with the line
y = F2. The reader can easily convince himself that lim sup F: must lie

koo
in the area where

e . . e e =

F, < G, (F)

1
i
i
H
;

which gives rise to the lemma. Figure 2 shows why just monotonicity of
Ga(') is not sufficient for the lemma to hold.

We can now state the main result of this paper.




Figure 1
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Proposition 2: Under the assumptions of Lemma 1 the sequence {rk} con-

verges to the fair allocation rate.

Proof: See Appendix A.

A Variation of the Algorithm.

In iteration (16) we have assumed that updating of all the rates
T, takes place simultaneously. It is possible to consider other related

algorithms whereby a single session rate r_ is updated using (16), then

s
the flows Fa are updated to reflect the change in Tes then another session
rate is updated using (16) and so on until all the session rates are

taken up cyclically in a fixed order. This one-session-at-a-time mode

of operation is reminiscent of the Gauss-Seidel method for solving systems
of equations and is perhaps better suited for distributed implementation.

It is possible to show that all the results of this section hold for this

modified algorithm as well.

A question of considerable interest is whether a totally asynchronous

distributed version of algorithm (16) will work satisfactorily (compare with
algorithms investigated in [S5], [6]). In such an algorithm each session oriein

sends at arbitrary times along the session path a control packet contain-

ing the current rate of the session. As the packet travels to its
destination the information needed to compute the right side of (16) is

collected. (We assume here a single destination per session and that

each 1ink a on the session path maintains the current value of Fa as the

sum of all currently assigned session rates L seSa, and
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the form of the function Hsa(-) for each seSa). The destination returns
the new rate to the session origin and the links along the session path.
This type of algorithm is very attractive from the practical point of
view since it does not require a session synchronization protocol. Its
convergence properties however are as yet unclear and are currently
under investigation. It is interesting to note that some of the algo-

rithms investigated by simulation in [1] are of similar nature.
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APPENDIX A

Proof of Lemma 1:

It suffices to show (19)-(20) for k = 1. Consider the function

Ga: R* + R* defined by

szs Hg, (C,-F,) if 0<F, <C,
Ga(Fa) = a
0 if Fa > Ca'

From (16) and (17) we have

1
1 _ . o o )
r - min zrs $ o [H_(C,FO) - 0] s v ses
ael, l-G'a(Fa)

or

rl = min
aeLs

o Oy O
{Hsa(ca°pa) - TG (F)) }, Y sesS. (A.1)

0

-f3?

1 Ga(Fa)

Since Ga(-) is monotonically nonincreasing we have G;(F:) < 0, and since

also Hsa(ca'F:)<3 0 we obtain from the hypothesis r: > 0 and (A.1)

ri > 0, ¥ seS8, (A.2)

and therefore also

Fl > 0, Voacl. (A.3)




From (A.l1) we have

) o
H _(C_-F) - r G'(F)
: < sa""a a os a a3y s, asLs
-
1 - G (F)

r

and by adding over all seSa we obtain

o (o] o}
6. (F%) - F°G! (F%)
F, ¢ 22 83 3 |y g
_ 0
1- G (FY

Since 1-G;(F:) > 0 we obtain from the inequality above

1 o 1 o o
F, < Ga(Fa) + (Fa-Fa)G;(Fa)

Since G_(°) is convex the right side of this inequality is less or equal

a
1 ,
to Ga(Fa) and we obtain
1 1
<
F, < G, (F). (A.4)

Since Ga(') is monotonically nonincreasing and Ga(F) = 0 for F z_Ca we

obtain from (A.4)

F- < C.. (A.5)

From (A.2)-(A.5) we obtain (19) and (20). Q.E.D.

Proof of Proposition 2:

Denote

r; = lim inf rt R Y seS.
| 'ad

WO g s
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Fix seS and consider a subsequence {rl;}keK converging to r;. We have
S

from (16)
. . k-1 k-1 k-1 k-1
r; = lim min {rs A [Hsa(ca-Fa ) - rg ]} .
koo agl
]
keKs

Since Ls consists of a finite number of links we may assume (by passing

to a subsequence of Ks if necessary) that there exists a link ag such

that
. k-1 k-1 k-1 k-1
r* = lim {r + v [H_(C_-F_ ) -r_"1}. (A.6)
s k*Ks s ag sa_""ag 3 s
koo
Since {Fk'l} is bounded above and below we may assume (by passing to a
s keKs
subsequence of Ks if necessary) that for some Fa
s
m Fl o= F .
kK s s
(]
ko
Denote also
1
Y, = ———=— = lnm Y:-l
' )
s l-Ga (Fa ) keKs s
s s
koo

We have from (A.6)

~ e s k-1 ~ It
r* > (l-y_ ) lim inf r +y. H__(C_-F )
s a k+K s a_ sa - a, a,
k-0
(1-;(&1 re + ;a H_ (C, - lin SupF: )
s s s s ko s




and finally

k
r* > H__ (C, - limsup F_) . (A.7)
S sas as K as

Since the choice of s was arbitrary we conclude that for every seS there
exists aseLs such that (A.7) holds.

Let alsL be such that

. . k
a, = argmin ga(Ca-llm sup Fa)
agl ko

Using the monotonicity of s;l we obtain

. k . k
Hsa (Ca -lim sup Fa ) > Hsa (Ca -lim sup Fa )
[ S ko< [ 1 1 koo 1

and therefore from (A.7)

. k
r > H__(C_ -lim sup F_), Y seS_ . (A.8)
s sa; a; a, a,

Summing (A.8) over all s:-:sa we obtain

1
liminf P\ > ] liminfrt = ]
k200 1 se8 koo $ seSa
4 1
> z : 3
=~ l. H__(C_-lim sup F_)
¥a, LM e

On the other hand from (20) we have

Eita
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. 3 . k
lim sup Fa < X Hsa (Ca - lim sup Fa ).

k 1 seS 1 1 k 1
3

It follows that the last two inequalities as well as (A.8) hold as equations,
the entire sequence {Ft } converges to } r; while each sequence
1 se$
a b
X 1
{r’}, seS_, converges to r*.
5 al S
Consider now a new network derived from the previous one by deleting
link a,, and all the sessions traversing it. We consider the algorithm L

executed in the same manner as before with the same initial rates for

the remaining sessions but with the capacity of each link ael replaced by

This will result in the same rate sequence for the sessions s¢ Sa as in
1

the original algorithm. A trivial modification of the argument used to
show (20) in Lemma 1 shows that we will have

. k . k

lim sup F_ < ) Hsa(ca - lim sup Fa) V ael .

koo SESa k>

This relation can be used to repeat the argument given earlier in order

to show the convergence of the sequences {r:} to r; for all sessions

s¢ Sa traversing the link a, where
1

. : k
a, = argmin g (C_-lim sup F).
2 ael 2 2 paeo a
a#a1

By repeating this procedure we will eventually exhaust all links

thereby showing that each rate sequence {rt}, seS converges to r;, each
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3 each flow sequence {F:}, ael converges to F} = )) e and each stepsize
fts seS

By a
4%
& sequence {YZ}, ael converges to

Yy = .
a
1+ ] HL(C -F})
seSa

By taking limits in (16) we have for all seS$

. . k k k k
g iiz ::? {rs + v, [ (C,-F)) - rs]} (A.9)
: S

e}
*
"

. . k k k k
min lim {r_ + vy [H _(C_-F)) - r
acL_ k s a‘'sa‘a a s

1}

where the interchange of min and lim above is valid since all the sequences

inside the braces converge and the number of elements of Ls is finite.

From (A.9) we obtain for all se$

. . . ) -
min Ya[Hsa(Ca F;) r;] 0
aeLs

Since y; > 0 for all aeLs we obtain

r; = min Hsa(Ca—F;) , ¥ seS.
aeLs

e . o -

The result now follows from Proposition 1 [cf. (13)]. Q.E.D.

- eam
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